(0) Obligation:

Clauses:

rem(X, Y, R) :- ','(notZero(Y), ','(sub(X, Y, Z), rem(Z, Y, R))).
rem(X, Y, X) :- ','(notZero(Y), geq(X, Y)).
sub(s(X), s(Y), Z) :- sub(X, Y, Z).
sub(X, 0, X).
notZero(s(X)).
geq(s(X), s(Y)) :- geq(X, Y).
geq(X, 0).

Query: rem(g,g,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

subA(s(T41), s(T42), X64) :- subA(T41, T42, X64).
subA(T47, 0, T47).
geqB(s(T85), s(T86)) :- geqB(T85, T86).
geqB(T91, 0).
subC(s(T29), T30, X40) :- subA(T29, T30, X40).
remD(T7, s(T15), T10) :- subC(T7, T15, X7).
remD(T7, s(T15), T10) :- ','(subC(T7, T15, T18), remD(T18, s(T15), T10)).
remD(s(T73), s(T74), s(T73)) :- geqB(T73, T74).

Query: remD(g,g,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
remD_in: (b,b,f)
subC_in: (b,b,f)
subA_in: (b,b,f)
geqB_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

remD_in_gga(T7, s(T15), T10) → U4_gga(T7, T15, T10, subC_in_gga(T7, T15, X7))
subC_in_gga(s(T29), T30, X40) → U3_gga(T29, T30, X40, subA_in_gga(T29, T30, X40))
subA_in_gga(s(T41), s(T42), X64) → U1_gga(T41, T42, X64, subA_in_gga(T41, T42, X64))
subA_in_gga(T47, 0, T47) → subA_out_gga(T47, 0, T47)
U1_gga(T41, T42, X64, subA_out_gga(T41, T42, X64)) → subA_out_gga(s(T41), s(T42), X64)
U3_gga(T29, T30, X40, subA_out_gga(T29, T30, X40)) → subC_out_gga(s(T29), T30, X40)
U4_gga(T7, T15, T10, subC_out_gga(T7, T15, X7)) → remD_out_gga(T7, s(T15), T10)
remD_in_gga(T7, s(T15), T10) → U5_gga(T7, T15, T10, subC_in_gga(T7, T15, T18))
U5_gga(T7, T15, T10, subC_out_gga(T7, T15, T18)) → U6_gga(T7, T15, T10, remD_in_gga(T18, s(T15), T10))
remD_in_gga(s(T73), s(T74), s(T73)) → U7_gga(T73, T74, geqB_in_gg(T73, T74))
geqB_in_gg(s(T85), s(T86)) → U2_gg(T85, T86, geqB_in_gg(T85, T86))
geqB_in_gg(T91, 0) → geqB_out_gg(T91, 0)
U2_gg(T85, T86, geqB_out_gg(T85, T86)) → geqB_out_gg(s(T85), s(T86))
U7_gga(T73, T74, geqB_out_gg(T73, T74)) → remD_out_gga(s(T73), s(T74), s(T73))
U6_gga(T7, T15, T10, remD_out_gga(T18, s(T15), T10)) → remD_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remD_in_gga(x1, x2, x3)  =  remD_in_gga(x1, x2)
s(x1)  =  s(x1)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subA_in_gga(x1, x2, x3)  =  subA_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
0  =  0
subA_out_gga(x1, x2, x3)  =  subA_out_gga(x3)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
remD_out_gga(x1, x2, x3)  =  remD_out_gga
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
geqB_in_gg(x1, x2)  =  geqB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
geqB_out_gg(x1, x2)  =  geqB_out_gg

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

remD_in_gga(T7, s(T15), T10) → U4_gga(T7, T15, T10, subC_in_gga(T7, T15, X7))
subC_in_gga(s(T29), T30, X40) → U3_gga(T29, T30, X40, subA_in_gga(T29, T30, X40))
subA_in_gga(s(T41), s(T42), X64) → U1_gga(T41, T42, X64, subA_in_gga(T41, T42, X64))
subA_in_gga(T47, 0, T47) → subA_out_gga(T47, 0, T47)
U1_gga(T41, T42, X64, subA_out_gga(T41, T42, X64)) → subA_out_gga(s(T41), s(T42), X64)
U3_gga(T29, T30, X40, subA_out_gga(T29, T30, X40)) → subC_out_gga(s(T29), T30, X40)
U4_gga(T7, T15, T10, subC_out_gga(T7, T15, X7)) → remD_out_gga(T7, s(T15), T10)
remD_in_gga(T7, s(T15), T10) → U5_gga(T7, T15, T10, subC_in_gga(T7, T15, T18))
U5_gga(T7, T15, T10, subC_out_gga(T7, T15, T18)) → U6_gga(T7, T15, T10, remD_in_gga(T18, s(T15), T10))
remD_in_gga(s(T73), s(T74), s(T73)) → U7_gga(T73, T74, geqB_in_gg(T73, T74))
geqB_in_gg(s(T85), s(T86)) → U2_gg(T85, T86, geqB_in_gg(T85, T86))
geqB_in_gg(T91, 0) → geqB_out_gg(T91, 0)
U2_gg(T85, T86, geqB_out_gg(T85, T86)) → geqB_out_gg(s(T85), s(T86))
U7_gga(T73, T74, geqB_out_gg(T73, T74)) → remD_out_gga(s(T73), s(T74), s(T73))
U6_gga(T7, T15, T10, remD_out_gga(T18, s(T15), T10)) → remD_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remD_in_gga(x1, x2, x3)  =  remD_in_gga(x1, x2)
s(x1)  =  s(x1)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subA_in_gga(x1, x2, x3)  =  subA_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
0  =  0
subA_out_gga(x1, x2, x3)  =  subA_out_gga(x3)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
remD_out_gga(x1, x2, x3)  =  remD_out_gga
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
geqB_in_gg(x1, x2)  =  geqB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
geqB_out_gg(x1, x2)  =  geqB_out_gg

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

REMD_IN_GGA(T7, s(T15), T10) → U4_GGA(T7, T15, T10, subC_in_gga(T7, T15, X7))
REMD_IN_GGA(T7, s(T15), T10) → SUBC_IN_GGA(T7, T15, X7)
SUBC_IN_GGA(s(T29), T30, X40) → U3_GGA(T29, T30, X40, subA_in_gga(T29, T30, X40))
SUBC_IN_GGA(s(T29), T30, X40) → SUBA_IN_GGA(T29, T30, X40)
SUBA_IN_GGA(s(T41), s(T42), X64) → U1_GGA(T41, T42, X64, subA_in_gga(T41, T42, X64))
SUBA_IN_GGA(s(T41), s(T42), X64) → SUBA_IN_GGA(T41, T42, X64)
REMD_IN_GGA(T7, s(T15), T10) → U5_GGA(T7, T15, T10, subC_in_gga(T7, T15, T18))
U5_GGA(T7, T15, T10, subC_out_gga(T7, T15, T18)) → U6_GGA(T7, T15, T10, remD_in_gga(T18, s(T15), T10))
U5_GGA(T7, T15, T10, subC_out_gga(T7, T15, T18)) → REMD_IN_GGA(T18, s(T15), T10)
REMD_IN_GGA(s(T73), s(T74), s(T73)) → U7_GGA(T73, T74, geqB_in_gg(T73, T74))
REMD_IN_GGA(s(T73), s(T74), s(T73)) → GEQB_IN_GG(T73, T74)
GEQB_IN_GG(s(T85), s(T86)) → U2_GG(T85, T86, geqB_in_gg(T85, T86))
GEQB_IN_GG(s(T85), s(T86)) → GEQB_IN_GG(T85, T86)

The TRS R consists of the following rules:

remD_in_gga(T7, s(T15), T10) → U4_gga(T7, T15, T10, subC_in_gga(T7, T15, X7))
subC_in_gga(s(T29), T30, X40) → U3_gga(T29, T30, X40, subA_in_gga(T29, T30, X40))
subA_in_gga(s(T41), s(T42), X64) → U1_gga(T41, T42, X64, subA_in_gga(T41, T42, X64))
subA_in_gga(T47, 0, T47) → subA_out_gga(T47, 0, T47)
U1_gga(T41, T42, X64, subA_out_gga(T41, T42, X64)) → subA_out_gga(s(T41), s(T42), X64)
U3_gga(T29, T30, X40, subA_out_gga(T29, T30, X40)) → subC_out_gga(s(T29), T30, X40)
U4_gga(T7, T15, T10, subC_out_gga(T7, T15, X7)) → remD_out_gga(T7, s(T15), T10)
remD_in_gga(T7, s(T15), T10) → U5_gga(T7, T15, T10, subC_in_gga(T7, T15, T18))
U5_gga(T7, T15, T10, subC_out_gga(T7, T15, T18)) → U6_gga(T7, T15, T10, remD_in_gga(T18, s(T15), T10))
remD_in_gga(s(T73), s(T74), s(T73)) → U7_gga(T73, T74, geqB_in_gg(T73, T74))
geqB_in_gg(s(T85), s(T86)) → U2_gg(T85, T86, geqB_in_gg(T85, T86))
geqB_in_gg(T91, 0) → geqB_out_gg(T91, 0)
U2_gg(T85, T86, geqB_out_gg(T85, T86)) → geqB_out_gg(s(T85), s(T86))
U7_gga(T73, T74, geqB_out_gg(T73, T74)) → remD_out_gga(s(T73), s(T74), s(T73))
U6_gga(T7, T15, T10, remD_out_gga(T18, s(T15), T10)) → remD_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remD_in_gga(x1, x2, x3)  =  remD_in_gga(x1, x2)
s(x1)  =  s(x1)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subA_in_gga(x1, x2, x3)  =  subA_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
0  =  0
subA_out_gga(x1, x2, x3)  =  subA_out_gga(x3)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
remD_out_gga(x1, x2, x3)  =  remD_out_gga
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
geqB_in_gg(x1, x2)  =  geqB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
geqB_out_gg(x1, x2)  =  geqB_out_gg
REMD_IN_GGA(x1, x2, x3)  =  REMD_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x4)
SUBC_IN_GGA(x1, x2, x3)  =  SUBC_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
SUBA_IN_GGA(x1, x2, x3)  =  SUBA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x4)
U7_GGA(x1, x2, x3)  =  U7_GGA(x3)
GEQB_IN_GG(x1, x2)  =  GEQB_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x3)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REMD_IN_GGA(T7, s(T15), T10) → U4_GGA(T7, T15, T10, subC_in_gga(T7, T15, X7))
REMD_IN_GGA(T7, s(T15), T10) → SUBC_IN_GGA(T7, T15, X7)
SUBC_IN_GGA(s(T29), T30, X40) → U3_GGA(T29, T30, X40, subA_in_gga(T29, T30, X40))
SUBC_IN_GGA(s(T29), T30, X40) → SUBA_IN_GGA(T29, T30, X40)
SUBA_IN_GGA(s(T41), s(T42), X64) → U1_GGA(T41, T42, X64, subA_in_gga(T41, T42, X64))
SUBA_IN_GGA(s(T41), s(T42), X64) → SUBA_IN_GGA(T41, T42, X64)
REMD_IN_GGA(T7, s(T15), T10) → U5_GGA(T7, T15, T10, subC_in_gga(T7, T15, T18))
U5_GGA(T7, T15, T10, subC_out_gga(T7, T15, T18)) → U6_GGA(T7, T15, T10, remD_in_gga(T18, s(T15), T10))
U5_GGA(T7, T15, T10, subC_out_gga(T7, T15, T18)) → REMD_IN_GGA(T18, s(T15), T10)
REMD_IN_GGA(s(T73), s(T74), s(T73)) → U7_GGA(T73, T74, geqB_in_gg(T73, T74))
REMD_IN_GGA(s(T73), s(T74), s(T73)) → GEQB_IN_GG(T73, T74)
GEQB_IN_GG(s(T85), s(T86)) → U2_GG(T85, T86, geqB_in_gg(T85, T86))
GEQB_IN_GG(s(T85), s(T86)) → GEQB_IN_GG(T85, T86)

The TRS R consists of the following rules:

remD_in_gga(T7, s(T15), T10) → U4_gga(T7, T15, T10, subC_in_gga(T7, T15, X7))
subC_in_gga(s(T29), T30, X40) → U3_gga(T29, T30, X40, subA_in_gga(T29, T30, X40))
subA_in_gga(s(T41), s(T42), X64) → U1_gga(T41, T42, X64, subA_in_gga(T41, T42, X64))
subA_in_gga(T47, 0, T47) → subA_out_gga(T47, 0, T47)
U1_gga(T41, T42, X64, subA_out_gga(T41, T42, X64)) → subA_out_gga(s(T41), s(T42), X64)
U3_gga(T29, T30, X40, subA_out_gga(T29, T30, X40)) → subC_out_gga(s(T29), T30, X40)
U4_gga(T7, T15, T10, subC_out_gga(T7, T15, X7)) → remD_out_gga(T7, s(T15), T10)
remD_in_gga(T7, s(T15), T10) → U5_gga(T7, T15, T10, subC_in_gga(T7, T15, T18))
U5_gga(T7, T15, T10, subC_out_gga(T7, T15, T18)) → U6_gga(T7, T15, T10, remD_in_gga(T18, s(T15), T10))
remD_in_gga(s(T73), s(T74), s(T73)) → U7_gga(T73, T74, geqB_in_gg(T73, T74))
geqB_in_gg(s(T85), s(T86)) → U2_gg(T85, T86, geqB_in_gg(T85, T86))
geqB_in_gg(T91, 0) → geqB_out_gg(T91, 0)
U2_gg(T85, T86, geqB_out_gg(T85, T86)) → geqB_out_gg(s(T85), s(T86))
U7_gga(T73, T74, geqB_out_gg(T73, T74)) → remD_out_gga(s(T73), s(T74), s(T73))
U6_gga(T7, T15, T10, remD_out_gga(T18, s(T15), T10)) → remD_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remD_in_gga(x1, x2, x3)  =  remD_in_gga(x1, x2)
s(x1)  =  s(x1)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subA_in_gga(x1, x2, x3)  =  subA_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
0  =  0
subA_out_gga(x1, x2, x3)  =  subA_out_gga(x3)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
remD_out_gga(x1, x2, x3)  =  remD_out_gga
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
geqB_in_gg(x1, x2)  =  geqB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
geqB_out_gg(x1, x2)  =  geqB_out_gg
REMD_IN_GGA(x1, x2, x3)  =  REMD_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x4)
SUBC_IN_GGA(x1, x2, x3)  =  SUBC_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
SUBA_IN_GGA(x1, x2, x3)  =  SUBA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x4)
U7_GGA(x1, x2, x3)  =  U7_GGA(x3)
GEQB_IN_GG(x1, x2)  =  GEQB_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x3)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 9 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GEQB_IN_GG(s(T85), s(T86)) → GEQB_IN_GG(T85, T86)

The TRS R consists of the following rules:

remD_in_gga(T7, s(T15), T10) → U4_gga(T7, T15, T10, subC_in_gga(T7, T15, X7))
subC_in_gga(s(T29), T30, X40) → U3_gga(T29, T30, X40, subA_in_gga(T29, T30, X40))
subA_in_gga(s(T41), s(T42), X64) → U1_gga(T41, T42, X64, subA_in_gga(T41, T42, X64))
subA_in_gga(T47, 0, T47) → subA_out_gga(T47, 0, T47)
U1_gga(T41, T42, X64, subA_out_gga(T41, T42, X64)) → subA_out_gga(s(T41), s(T42), X64)
U3_gga(T29, T30, X40, subA_out_gga(T29, T30, X40)) → subC_out_gga(s(T29), T30, X40)
U4_gga(T7, T15, T10, subC_out_gga(T7, T15, X7)) → remD_out_gga(T7, s(T15), T10)
remD_in_gga(T7, s(T15), T10) → U5_gga(T7, T15, T10, subC_in_gga(T7, T15, T18))
U5_gga(T7, T15, T10, subC_out_gga(T7, T15, T18)) → U6_gga(T7, T15, T10, remD_in_gga(T18, s(T15), T10))
remD_in_gga(s(T73), s(T74), s(T73)) → U7_gga(T73, T74, geqB_in_gg(T73, T74))
geqB_in_gg(s(T85), s(T86)) → U2_gg(T85, T86, geqB_in_gg(T85, T86))
geqB_in_gg(T91, 0) → geqB_out_gg(T91, 0)
U2_gg(T85, T86, geqB_out_gg(T85, T86)) → geqB_out_gg(s(T85), s(T86))
U7_gga(T73, T74, geqB_out_gg(T73, T74)) → remD_out_gga(s(T73), s(T74), s(T73))
U6_gga(T7, T15, T10, remD_out_gga(T18, s(T15), T10)) → remD_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remD_in_gga(x1, x2, x3)  =  remD_in_gga(x1, x2)
s(x1)  =  s(x1)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subA_in_gga(x1, x2, x3)  =  subA_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
0  =  0
subA_out_gga(x1, x2, x3)  =  subA_out_gga(x3)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
remD_out_gga(x1, x2, x3)  =  remD_out_gga
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
geqB_in_gg(x1, x2)  =  geqB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
geqB_out_gg(x1, x2)  =  geqB_out_gg
GEQB_IN_GG(x1, x2)  =  GEQB_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GEQB_IN_GG(s(T85), s(T86)) → GEQB_IN_GG(T85, T86)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GEQB_IN_GG(s(T85), s(T86)) → GEQB_IN_GG(T85, T86)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • GEQB_IN_GG(s(T85), s(T86)) → GEQB_IN_GG(T85, T86)
    The graph contains the following edges 1 > 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBA_IN_GGA(s(T41), s(T42), X64) → SUBA_IN_GGA(T41, T42, X64)

The TRS R consists of the following rules:

remD_in_gga(T7, s(T15), T10) → U4_gga(T7, T15, T10, subC_in_gga(T7, T15, X7))
subC_in_gga(s(T29), T30, X40) → U3_gga(T29, T30, X40, subA_in_gga(T29, T30, X40))
subA_in_gga(s(T41), s(T42), X64) → U1_gga(T41, T42, X64, subA_in_gga(T41, T42, X64))
subA_in_gga(T47, 0, T47) → subA_out_gga(T47, 0, T47)
U1_gga(T41, T42, X64, subA_out_gga(T41, T42, X64)) → subA_out_gga(s(T41), s(T42), X64)
U3_gga(T29, T30, X40, subA_out_gga(T29, T30, X40)) → subC_out_gga(s(T29), T30, X40)
U4_gga(T7, T15, T10, subC_out_gga(T7, T15, X7)) → remD_out_gga(T7, s(T15), T10)
remD_in_gga(T7, s(T15), T10) → U5_gga(T7, T15, T10, subC_in_gga(T7, T15, T18))
U5_gga(T7, T15, T10, subC_out_gga(T7, T15, T18)) → U6_gga(T7, T15, T10, remD_in_gga(T18, s(T15), T10))
remD_in_gga(s(T73), s(T74), s(T73)) → U7_gga(T73, T74, geqB_in_gg(T73, T74))
geqB_in_gg(s(T85), s(T86)) → U2_gg(T85, T86, geqB_in_gg(T85, T86))
geqB_in_gg(T91, 0) → geqB_out_gg(T91, 0)
U2_gg(T85, T86, geqB_out_gg(T85, T86)) → geqB_out_gg(s(T85), s(T86))
U7_gga(T73, T74, geqB_out_gg(T73, T74)) → remD_out_gga(s(T73), s(T74), s(T73))
U6_gga(T7, T15, T10, remD_out_gga(T18, s(T15), T10)) → remD_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remD_in_gga(x1, x2, x3)  =  remD_in_gga(x1, x2)
s(x1)  =  s(x1)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subA_in_gga(x1, x2, x3)  =  subA_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
0  =  0
subA_out_gga(x1, x2, x3)  =  subA_out_gga(x3)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
remD_out_gga(x1, x2, x3)  =  remD_out_gga
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
geqB_in_gg(x1, x2)  =  geqB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
geqB_out_gg(x1, x2)  =  geqB_out_gg
SUBA_IN_GGA(x1, x2, x3)  =  SUBA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBA_IN_GGA(s(T41), s(T42), X64) → SUBA_IN_GGA(T41, T42, X64)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUBA_IN_GGA(x1, x2, x3)  =  SUBA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUBA_IN_GGA(s(T41), s(T42)) → SUBA_IN_GGA(T41, T42)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUBA_IN_GGA(s(T41), s(T42)) → SUBA_IN_GGA(T41, T42)
    The graph contains the following edges 1 > 1, 2 > 2

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REMD_IN_GGA(T7, s(T15), T10) → U5_GGA(T7, T15, T10, subC_in_gga(T7, T15, T18))
U5_GGA(T7, T15, T10, subC_out_gga(T7, T15, T18)) → REMD_IN_GGA(T18, s(T15), T10)

The TRS R consists of the following rules:

remD_in_gga(T7, s(T15), T10) → U4_gga(T7, T15, T10, subC_in_gga(T7, T15, X7))
subC_in_gga(s(T29), T30, X40) → U3_gga(T29, T30, X40, subA_in_gga(T29, T30, X40))
subA_in_gga(s(T41), s(T42), X64) → U1_gga(T41, T42, X64, subA_in_gga(T41, T42, X64))
subA_in_gga(T47, 0, T47) → subA_out_gga(T47, 0, T47)
U1_gga(T41, T42, X64, subA_out_gga(T41, T42, X64)) → subA_out_gga(s(T41), s(T42), X64)
U3_gga(T29, T30, X40, subA_out_gga(T29, T30, X40)) → subC_out_gga(s(T29), T30, X40)
U4_gga(T7, T15, T10, subC_out_gga(T7, T15, X7)) → remD_out_gga(T7, s(T15), T10)
remD_in_gga(T7, s(T15), T10) → U5_gga(T7, T15, T10, subC_in_gga(T7, T15, T18))
U5_gga(T7, T15, T10, subC_out_gga(T7, T15, T18)) → U6_gga(T7, T15, T10, remD_in_gga(T18, s(T15), T10))
remD_in_gga(s(T73), s(T74), s(T73)) → U7_gga(T73, T74, geqB_in_gg(T73, T74))
geqB_in_gg(s(T85), s(T86)) → U2_gg(T85, T86, geqB_in_gg(T85, T86))
geqB_in_gg(T91, 0) → geqB_out_gg(T91, 0)
U2_gg(T85, T86, geqB_out_gg(T85, T86)) → geqB_out_gg(s(T85), s(T86))
U7_gga(T73, T74, geqB_out_gg(T73, T74)) → remD_out_gga(s(T73), s(T74), s(T73))
U6_gga(T7, T15, T10, remD_out_gga(T18, s(T15), T10)) → remD_out_gga(T7, s(T15), T10)

The argument filtering Pi contains the following mapping:
remD_in_gga(x1, x2, x3)  =  remD_in_gga(x1, x2)
s(x1)  =  s(x1)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subA_in_gga(x1, x2, x3)  =  subA_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
0  =  0
subA_out_gga(x1, x2, x3)  =  subA_out_gga(x3)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
remD_out_gga(x1, x2, x3)  =  remD_out_gga
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
geqB_in_gg(x1, x2)  =  geqB_in_gg(x1, x2)
U2_gg(x1, x2, x3)  =  U2_gg(x3)
geqB_out_gg(x1, x2)  =  geqB_out_gg
REMD_IN_GGA(x1, x2, x3)  =  REMD_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REMD_IN_GGA(T7, s(T15), T10) → U5_GGA(T7, T15, T10, subC_in_gga(T7, T15, T18))
U5_GGA(T7, T15, T10, subC_out_gga(T7, T15, T18)) → REMD_IN_GGA(T18, s(T15), T10)

The TRS R consists of the following rules:

subC_in_gga(s(T29), T30, X40) → U3_gga(T29, T30, X40, subA_in_gga(T29, T30, X40))
U3_gga(T29, T30, X40, subA_out_gga(T29, T30, X40)) → subC_out_gga(s(T29), T30, X40)
subA_in_gga(s(T41), s(T42), X64) → U1_gga(T41, T42, X64, subA_in_gga(T41, T42, X64))
subA_in_gga(T47, 0, T47) → subA_out_gga(T47, 0, T47)
U1_gga(T41, T42, X64, subA_out_gga(T41, T42, X64)) → subA_out_gga(s(T41), s(T42), X64)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
subC_in_gga(x1, x2, x3)  =  subC_in_gga(x1, x2)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
subA_in_gga(x1, x2, x3)  =  subA_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
0  =  0
subA_out_gga(x1, x2, x3)  =  subA_out_gga(x3)
subC_out_gga(x1, x2, x3)  =  subC_out_gga(x3)
REMD_IN_GGA(x1, x2, x3)  =  REMD_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REMD_IN_GGA(T7, s(T15)) → U5_GGA(T15, subC_in_gga(T7, T15))
U5_GGA(T15, subC_out_gga(T18)) → REMD_IN_GGA(T18, s(T15))

The TRS R consists of the following rules:

subC_in_gga(s(T29), T30) → U3_gga(subA_in_gga(T29, T30))
U3_gga(subA_out_gga(X40)) → subC_out_gga(X40)
subA_in_gga(s(T41), s(T42)) → U1_gga(subA_in_gga(T41, T42))
subA_in_gga(T47, 0) → subA_out_gga(T47)
U1_gga(subA_out_gga(X64)) → subA_out_gga(X64)

The set Q consists of the following terms:

subC_in_gga(x0, x1)
U3_gga(x0)
subA_in_gga(x0, x1)
U1_gga(x0)

We have to consider all (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


U5_GGA(T15, subC_out_gga(T18)) → REMD_IN_GGA(T18, s(T15))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(REMD_IN_GGA(x1, x2)) = 1 + x1   
POL(U1_gga(x1)) = x1   
POL(U3_gga(x1)) = x1   
POL(U5_GGA(x1, x2)) = 1 + x2   
POL(s(x1)) = 1 + x1   
POL(subA_in_gga(x1, x2)) = 1 + x1   
POL(subA_out_gga(x1)) = 1 + x1   
POL(subC_in_gga(x1, x2)) = x1   
POL(subC_out_gga(x1)) = 1 + x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

subC_in_gga(s(T29), T30) → U3_gga(subA_in_gga(T29, T30))
subA_in_gga(s(T41), s(T42)) → U1_gga(subA_in_gga(T41, T42))
subA_in_gga(T47, 0) → subA_out_gga(T47)
U3_gga(subA_out_gga(X40)) → subC_out_gga(X40)
U1_gga(subA_out_gga(X64)) → subA_out_gga(X64)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REMD_IN_GGA(T7, s(T15)) → U5_GGA(T15, subC_in_gga(T7, T15))

The TRS R consists of the following rules:

subC_in_gga(s(T29), T30) → U3_gga(subA_in_gga(T29, T30))
U3_gga(subA_out_gga(X40)) → subC_out_gga(X40)
subA_in_gga(s(T41), s(T42)) → U1_gga(subA_in_gga(T41, T42))
subA_in_gga(T47, 0) → subA_out_gga(T47)
U1_gga(subA_out_gga(X64)) → subA_out_gga(X64)

The set Q consists of the following terms:

subC_in_gga(x0, x1)
U3_gga(x0)
subA_in_gga(x0, x1)
U1_gga(x0)

We have to consider all (P,Q,R)-chains.

(30) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(31) TRUE